
JOURNAL OF MATERIALS SCIENCE 23 (1988) 1189-1194 

Strength distribution and gauge length 
extrapolations in glass fibre 

K. K. PHANI 
Central Glass and Ceramic Research Institute, Calcutta 700 032, India 

Tensile strength data of E and S-994 glass fibres, reported by previous workers, have been 
analysed using a modified Weibull distribution. The function provides an upper and a lower 
limit of strength and is characterized by two shape parameters. Based on the strength data at 
two gauge lengths (15 and 120mm), predictions of the strengths at other gauge lengths are 
in good agreement with experimental data. 

1. In troduc t ion  
Glass fibres are brittle materials and as such they 
exhibit a very broad tensile strength distribution. The 
fibre strength is determined by pre-existing surface 
flaws [I] which occur with a statistical nature. This 
increases the probability of encountering a more 
severe flaw with increase in surface area, with the 
consequent reduction of the fibre strength as the 
length increases. Statistically, the dependence of fibre 
strength on its length is analysed in terms of weakest- 
link theory and the form most frequently applied to 
reinforcing fibres such as glass or carbon is due to 
Weibull [2]. Current theories of composite strength 
[3-6] usually require a knowledge of the fibre strength 
and its distribution at gauge lengths of the order of 
the critical length for the stress transfer (0.1 to 
0.2 ram) and the Weibull distribution forms the basis 
of extrapolating the fibre strength to such gauge 
lengths. Practical limitations impose restrictions for 
obtaining reliable data from experimental measure- 
ments at such extremely short gauge lengths. 

Schmitz and Metcalfe [7] studied the effect of length 
on the strength of glass fibres of two different com- 
positions (E-glass and S-994 glass) using gauge lengths 
in the range 0.25 to 240 mm. They analysed the experi- 
mental data in terms of Gaussian and Weibull distri- 
butions and the Kies [8] modification of the Weibull 
distribution. As opposed to the prediction of these 
theories, the log(strength)-log(length) plot showed a 
change in slope at short fibre lengths (below 5 mm). 
This was explained in terms of a bimodal flaw distri- 
bution and the need for a more reliable strength- 
length model was felt. In this paper a modification 
to the Weibull distribution is suggested for the analy- 
sis of fibre strength data. The applicability of the 
suggested function has also been evaluated in terms 
of the experimental values reported by Schmitz and 
Metcalfe [7]. 

2. Cumulat ive  f l a w  distr ibut ion 
funct ion 

The "weakest link" theory is based on the assumption 
that a brittle material fails when the stress at any one 
flaw becomes larger than the ability of the surround- 

ing material to resist the local stresses. Thus the failure 
probability P, that a fibre of length L will fail below 
stress level S, is given by [9] 

P = 1 - exp [ - L  N(S)] (1) 

where N(S) is the cumulative number of flaws of 
strength less than S per unit length. 

In Equation 1, N(S) is an unknown function and 
Weibull assumed an empirical form for this function, 
given by 

( S -- S L ~m 
N(S) So / s > &  

N(S) = 0 S < SL 

(2) 

where SL is the stress at which there is zero probability 
of failure, So is a normalizing factor and m is a shape 
parameter, usually referred as the Weibull modulus. 
In most fracture work SL is taken as zero since it is a 
location parameter only and does not change the 
goodness of fit of data to the distribution function 
[10]. 'Thus Equations 1 and 2 yield 

l n I l l n ( 1  _ - - @ ) 1  = m l n S - m l n S o  (3) 

Equation 3 shows that a plot of in {(I /L)In [1/ 
(1 - P)]} against in S for the strength data tested at 
the same or different gauge lengths should yield a 
straight line with slope m. However, for numerous 
strength data reported in the literature [7, 9, 10 15] 
for glass fibres, carbon fibres as well as glass rods, the 
data points do not fall on a single straight line as 
predicted from Equation 3 and it has been concluded 
[12] that the Weibull distribution is not applicable 
to the entire strength distribution. As an alternative 
approach a bimodal Weibull distribution has usually 
been applied [9, 12] for the analysis of the data, with 
two separate straight lines fitted to the data according 
to Equation 3. It may be pointed out that the strict 
application of the Weibull distribution presumes a 
unimodal distribution [16]. Olshansky and Maurer [9] 
have pointed out that a bimodal strength distribution 
in which the slope of In [N(S)] decreases with In S 
cannot be interpreted in terms of two Weibull 
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distributions unless it is assumed that  neither distri- 
but ion extends over the entire experimental range o f  
stresses. Such a data  plot  is shown in Fig. 1. It shows 
the tensile strength data  for E-glass fibre reported 
by Schmitz and Metcalfe [7] for  gauge lengths o f  15 
and 120nm. As can be seen f rom the plot, the flaw 
populat ion seems to change its character  at about  

Figure 1 Plot of In {(l/L) in [1/(1 - P)]} 
against ln S for E-glass fibres at gauge 
lengths of (O) 15 and (e) 120mm, from 
Smitz and Metcalfe [7]. The curve corre- 
sponds to the fitted equation. 

208.5 × 103 p.s.i. (1.44 GPa).  The histograms of  tensile 
strength data  for these two gauge lengths, as shown in 
Figs 2a and b, indicate unimodal  distributions rather 
than a non-over lapping bimodal  distribution. An  
analysis o f  these two distributions in terms o f  the 
Pearson system of  probabil i ty-density functions [17] 
yields unimodal  beta distributions, which are also 
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Figure 2 Tensile strength histograms (N = 50) of E-glass fibres having gauge lengths of (a) 15 mm and (b) 120 mm. The curves correspond 
to the fitted beta distribution. 103p.s.i. = 6.895MPa. 
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shown in Fig. 2. Snowden [16] has also analysed the 
statistical justification for using a bimodal Weibull 
distribution by calculating the standardized coef- 
ficients of skewness and kurtosis of various distri- 
butions, and concluded that the beta distribution fits 
the numerous bimodal strength data best. 

In the beta distribution the values of the variates are 
limited to a finite interval, which is more realistic for 
the strength data of brittle materials like glass. It has 
also two shape parameters. On the other hand, the 
Weibull distribution requires S = oo for certainty of 
failure, which is physically an unsatisfactory bound- 
ary condition. To overcome this limitation Kies [8] 
proposed a modification to the Weibull distribution of 
the form 

N ( S )  = Su - S J (4) 

where Su is the upper strength limit and m0 is defined 
as the damage coefficient. However, it has been shown 
[7, 12] that even the function given by Equation 4 is 
not applicable over the entire strength distribution. 
The functional form of Equation 4 is similar to one 
obtained from the beta distribution, except that it has 
only one shape parameter. Thus a further modifi- 
cation is suggested in the form 

,0, , / ( %  
where Sol, So2 and ml, m2 are scaling parameters and 
shape parameters, respectively. Equation 5 along with 
Equation 1 yields 

l n [ l l n ( l _ ~ l  p ) l  

-& Su-S) 
= m l l n ( S f f 0 1  ) - m e l n (  S~ (6) 

3. Average strength-length relationship 
The average strength of the fibre can be written as 

= fs~ Ps dS (7) L 
where Ps = probability of survival = (1 - P). Thus 
Equations 1 and 5 give 

exp So01 ~1/( ~02S;21dS 
(8) 

Thus, once the values of unknown parameters have 
been determined from Equation 6 by fitting the experi- 
mental data at one gauge length, the average strength 
values at any other gauge length can be determined 
from Equation 8 by numerical integration. However, as 
pointed out by Olshansky and Maurer [9] one disad- 
vantage of determining the values of the unknown 
parameters of Equation 6 from the experimental data 
for exclusively one gauge length is that the majority of 
samples will fail over a limited range of stress levels, 

and little information of the flaw population outside 
this range will be obtained. This difficulty can be 
partially overcome by using data for at least two 
gauge lengths. 

4. Data analysis 
As mentioned earlier, the applicability of the proposed 
distribution function (Equation 5) has been evaluated 
in terms of the glass-fibre strength data reported by 
Schmitz and Metcalfe [7]. From the extensive strength 
data reported by them two sets of data have been 
analysed one for E-glass fibres (Series II,1 in Table 
C-1 of [7]) and the other for S-994 glass fibres (9/19/62 
in Table C-IX of [7]). 50 specimens were tested for 
E-glass fibres at each of the gauge lengths 15, 50, 60, 
120 and 240mm; for S-994 fibres, 25 specimens were 
tested at each of the gauge lengths 0.25, 0.5, 1, 2.5, 5, 
7.5, 10, 15, 30 and 60mm. For the details of experi- 
mental work reference may be made to their original 
work [7]. 

Fig. 1 shows the plot of In {(l/L) In [1/(1 - P)]} 
against In S for E-glass fibre tested at gauge lengths of 
15 and 120 mm. Data for two gauge lengths differing 
by an order of magnitude have been used for the 
reasons mentioned earlier. Fig. 3 shows a similar plot 
for S-994 fibres for gauge lengths of 0.25 and 60 mm. 
Since in this case the fibre diameter shows a greater 
variation, the quantity L has been replaced by A where 
A = rcdL, where d is the diameter of an individual 
fibre. In both cases the data points fall on a single 
curve. 

For fitting Equation 6 to these data, initial estimates 
of Su and SL were made from the beta distribution 
fitted to the tensile strength histograms at short and 
long gauge lengths, respectively. A set of values were 
assumed for the parameters S01 and S02, and the values 
rn~ and rn 2 were determined by regression analysis of 
the data. From the calculated and experimental values 
of In {(l/L) in [1/(1 - P)]}, a least-squares sum was 
evaluated for the particular set of parameters S0~ and 
S02. The computation was then iterated with a new set 
of S01 and S02 until the minimum least-squares sum 
was obtained. The procedure was repeated by chang- 
ing the values of Su and SL, again using the minimum 
least-squares sum as the criterion for the best fitted 
values. The values of parameters obtained in this way 
for both sets of data are given in Table I. The fitted 
equations are also plotted in Figs 1 and 3. The cumula- 
tive failure probabilities at different gauge lengths were 
evaluated from Equations 1 and 5. These are plotted 
in Figs 4 and 5 along with the experimental strength 
values of E and S-994 glass fibres, respectively. The 

T A B L E  I Values of parameters of equation 6 obtained from 
failure probability analysis 

Parameter E-glass fibre S-994 glass fibre 

S u (103 p.s.i. (GPa)) 873.5 (6.02) 880.0 (6.07) 
S L (103p.s.i. (GPa)) 90.0 (0.62) 80.0 (0.55) 
S01 (103p.s.i, (GPa)) 79.5 (0.55) 40.0 (0.28) 
S02 (103 p.s.i. (GPa)) 300.0 (2.07) 650.0 (4,48) 
m I 1.126 1.294 
m 2 5.301 5.982 
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Figure 3 Plot of  In {(I/A) In [1/ 
( 1  - P)]} against l n S  for S-994 
glass fibres at gauge lengths of(D) 
0.25 and (o)  60mm,  from the 
Smitz and Metcalfe [7]. The curve 
corresponds to the fitted equa- 
tion. 

average strength values at different gauge lengths, 
obtained from Equation 8 by numerical integration, 
are given in Table II and plotted in Fig. 6 on a log-log 
scale for both E and S-994 glass fibres. 

5. Discussion 
Figs I and 3 show close agreement between the experi- 
mental data and the proposed distribution function. 
The values of the upper strength limit are obtained as 
873.5 and 880 x 103p.s.i. (6.023 and 6.068 GPa) for E 
and S-994 glass fibres, respectively. The limit for the 
tensile strength of a brittle, elastic solid can be derived 
from the force-displacement curve between two 

T A B L E  II  Average strength values of  E and S-994 glass fibres 

atoms. Accordingly, the theoretical maximum strength 
St is estimated to be [18] 

St = E/IO 

where E is the tensile modulus. Applying this equa- 
tion, the theoretical upper limit for the strengths of 
E and S-994 glass fibres are obtained as 1050 and 
1220 x 103p.s.i. (7.240 and 8.412GPa), respectively, 
from the elastic moduli values reported by Schmitz 
and Metcalfe [7]. The lower values, as obtained from 
the fitted equation, thus possibly indicate the presence 
of flaws even at the smallest gauge length. It may be 
mentioned that Schmitz and Metcalfe [7], on the basis 

Type of glass fibre Gauge length 
(mm) 

Measured values Calculated values 
_+ standard deviation (103 p.s.i.)* 
(103 p.s.i.)* 

S-994 

15.00 292 + 57.8 301.8 
30.00 277 _ 40.1 272.2 
60.00 227 _ 50.6 246.0 

120.00 233 ___ 39.8 223.1 
240.00 227 __+ 45.3 203.2 

0.25 597 _ 76.4 565.8 
0.50 579 4- 70.0 536.1 
1.00 573 _ 85.0 503.8 
2.50 526 4- 92.8 457.3 
5.00 533 + 98.4 419.3 
7.50 404 + 101.6 396.1 

10.00 463 4- 116.3 379.2 
15.00 452 + 134.7 355.0 
30.00 408 + 125.8 312.4 
60.00 364 4- 90.3 269.2 

* 10  3 p.s.i. = 6.895 MPa. 
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Figure 4 Failure probability of E-glass fibres having 
gauge lengths of  (zx) 30, ( x )  60 and (rn) 240mm; 
( - - )  predicted. 103p.s.i. = 6.895 MPa. 

of the frequency of occurrence of high strength values, 
estimated a maximum strength of 800 x 103p.s.i. 
(5.5 GPa) for S-994 fibres. This is in close agreement 
with the value obtained here. The values of  SL give the 
lower strength limit as the fibre length increases. The 
actual lowest measured strengths were 105 x 103 p.s.i. 
(724 MPa) for E-glass (at a probability of failure of 
1%), and 94 × 103p.s.i. (648MPa) (at a probability 
of failure of 2%) for S-994 glass [7]. The values of 90 
and 80 x 103p.s.i. (621 and 552MPa), obtained from 
the fitted equations for E and S-994 glass, respectively, 
are in close agreement with the above values. 

As can be seen from Table I, the values of ml and 
m 2 obtained for both groups of fibre are of the same 
order of magnitude. Like the damage coefficient m0 in 
Kies' equation (Equation 4), if these two coefficients 
are associated with the damage coefficients of fibre, 
the almost identical values of ml and m 2 for both E 
and S-994 glasses reflect the constancy of damaging 
factors in the manufacture and handling of glass fibre 
strands. This observation is in agreement with the 
conclusion drawn by Schmitz and Metcalfe [7] from 
the Weibull analysis. 

Figs 4 and 5 show close agreement between the 
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Figure 5 Failure probability of S-994 glass fibres 
having gauge lengths of  03) 1, ( x )  15 and (o) 
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) predicted. 103p.s.i. = 

predicted failure probability and the experimental 
data at different gauge lengths, particularly at low 
gauge lengths. However, no ready explanation can be 
found for the large deviation of the lower group of 
strength values at a gauge length of 15 mm for S-994 
glass from the experimental details. As a probable 
reason it can be attributed to non-randomness of the 
sample. 

As can be seen from Table II and Fig. 6, the 
proposed equation predicts the gauge length depen- 
dence of strength quite accurately. In all cases the 
predicted value lies within the interval of one standard 
deviation from the mean. Fig. 6 shows that the rate of 
of increase of the slope of log(strength)-log(length) 
for S-994 glass increases at a gauge length of about 
5 mm. This is consistent with the experimental obser- 
vations of Schmitz and Metcalfe [7]. Though the 
strength data for E-glass fibre were reported only up 
to a gauge length of 15 mm, a similar trend is also 
predicted from the proposed equation. 

6. Conclusions 
The strength data of E and S-994 glass fibres have 
been analysed in terms of a proposed cumulative dis- 
tribution function using the weakest-link theory. The 
strength-length relationship has also been derived. 
The specific conclusions that can be drawn from this 
study are: 

1. The cumulative flaw distribution function given 
by 

/ s - sL 
N(S)  

can be used to describe the strength distribution in 
glass fibre. 

2. The function provides an upper and lower limit- 
ing strength. This is consistent with the boundary 
conditions of the physical phenomena it represents. 

3. The parameters m~ and m2 can be associated with 
damage of the fibre during manufacture and handling, 
and are therefore independent of glass composition. 

4. As opposed to the Weibull distribution, the equa- 
tion correctly predicts an increase in slope of the 
log(strength)-log(length) curve with increase in gauge 
length. 
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